HETEROCYCLIC COMPOUNDS OF ALUMINIUM (III) WITH GLYCOLS: PART 2 -
 REACTION OF $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ WITH
 $\mathrm{MOCH}_{3}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K})$ IN 1:3 MOLAR RATIO

Anita Kothari

Department of Chemistry, Government College, Ajmer, 305001, India
e-mail : anitajm1969@gmail.com

Abstract

Reaction of $\mathrm{Al}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}$ with $\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$ in 1:3 molar ratio in refluxing benzene, have resulted in the synthesis of $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$. This is soluble in a variety of organic solvents (e.g. benzene, chloroform and dimethylsulfoxide. $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ is monomeric in chloroform. Reaction of $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ with $\mathrm{MOCH}_{3}(\mathrm{M}=\mathrm{Li}$, Na and K$)$ in $1: 3$ molar ratio in refluxing methanol yields $\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{M}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$. These are soluble in methanol and dimethyl sulfoxide. These bimetallic heterocyclic derivatives are monomeric in methanol and have slight ionic character. Plausible structures has been proposed on the basis of elemental analyses, molecular weight measurements, IR, NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and $\left.{ }^{27} \mathrm{Al}\right)$ spectral studies. ${ }^{27} \mathrm{Al}$ NMR spectra show the presence of four coordinated aluminum site.

Introduction

Aluminium, being a hard acid, is expected to bond strongly to hard bases ${ }^{1}$ such as oxygen and/or nitrogen containing ligands. In view of its lesser bonding tendency towards soft bases such as sulphur containing ligands, only a few aluminium derivatives with sulphur-containing ligands have been reported ${ }^{2-5}$.

The facile reactivity ${ }^{6}$ of metal-alkoxy bond in metal alkoxides with a variety of reagents has been utilized for the synthesis of a number of derivatives for example $\quad \beta$-diketonaies ${ }^{7}$, carboxylates ${ }^{8}$, silyloxides and even heterometallic alkoxide ${ }^{9}$. The feasibility of carrying out such reactions ${ }^{10-12}$ in the desired molar ratio with continuous fractionation of alcohol liberated in the reaction azeotropically with benzene has resulted in interesting mixed-alkoxy ligand derivatives.

Vol. 5 Issue 3, March 2017, ISSN: 2347-6532 Impact Factor: 6.660
Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

In this paper we report the reaction of $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ with MOCH_{3} $(\mathrm{M}=\mathrm{Li}, \mathrm{Na}$ and K$)$ in 1:3 molar ratio.

Experimental

Moisture was carefully excluded throughout experiment. Aluminium isopropoxide was prepared as described by Mehrotra ${ }^{13}$. 2-methyl-2,4-pentanediol was distilled before use. Solvents were dried by reported methods ${ }^{14}$.

Aluminium was estimated gravimetrically as the oxinate. Isopropanol was estimated by chromate oxidimetric methods ${ }^{15}$. Isopropoxy groups in the products were estimated by hydrolysing them and collecting the liberated isopropanol azeotropically with benzene.
${ }^{1} \mathrm{H}$ NMR spectra were recorded using TMS as an internal reference, while ${ }^{13} \mathrm{C}$ and ${ }^{27} \mathrm{Al}$ NMR spectra were recorded in benzene solution using $\mathrm{D}_{2} \mathrm{O}$ locks. IR spectra were recorded as Nujol mulls using KBr and CsI plates in the range $4000-200 \mathrm{~cm}^{-1}$ on a Perkin-Elmer spectrophotometer model 577. Molecular weight measurements were carried on a Knauer Vapour Pressure Osmometer in chloroform at $45^{\circ} \mathrm{C}$.

1. Reaction of $\mathrm{Al}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}$, with $\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{\mathbf{2}} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$ in $\mathbf{1 : 3}$ molar ratio in benzene : The reaction of $\mathrm{Al}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}$, $(3.23 \mathrm{~g}, 15.81 \mathrm{mmol})$ with $\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}(5.62 \mathrm{~g}$, 47.55 mmol) in 1:3 molar ratio in refluxing benzene for about 5 hrs . (Completion of the reaction was checked by estimating the isopropanol collected azeotropically with benzene) yielded a colourless viscous liquid of the type $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ after the removal of solvent under vacuum. The product solidified on keeping to give white solid. Yield found : 90%; Anal. found : Al, 7.12; C, $56.85 ; \mathrm{H}, 10.05 \%$. Calculated for $\mathrm{C}_{18} \mathrm{H}_{39} \mathrm{O}_{6} \mathrm{Al}: \mathrm{Al}$, 7.13; C, 57.12; H, 10.39\%.
2. Reaction of $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ with LiOCH_{3} in $1: 3$ molar ratio in methanol : A methanol solution of lithium methoxide (Prepared by dissolution of 0.20 g lithium, 28.82 mmol in excess methanol) was added to a suspension of $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ (3.67 g , 9.70 mmol). The mixture was refluxed for 2 hrs . to ensure the completion of the reaction. Excess methanol was removed under vacuum, giving a white solid of type $\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{Li}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$. The product can be

International Journal of Engineering \& Scientific Research

Vol. 5 Issue 3, March 2017,
ISSN: 2347-6532 Impact Factor: 6.660
Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A
purified from methanol solution. Yield found : 95\% Anal. found : Al, $5.47 ; \mathrm{C}, 50.80 ; \mathrm{H}$, 9.46% Calculated for $\mathrm{C}_{21} \mathrm{H}_{48} \mathrm{O}_{9} \mathrm{AlLi}_{3}$: Al, 5.48; C, 51.22; $\mathrm{H}, 9.83 \%$.

Likewise, the reactions of $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ with sodium or potassium methoxide in 1:3 molar ratio in methanol were carried out (Table-1).

Results and Discussion

Compounds of 2-methyl-2,4-pentanediol

The reaction of $\mathrm{Al}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}$, with $\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$ in $1: 3$ molar ratio in refluxing benzene yield product of the following type :

$$
\begin{aligned}
\mathrm{Al}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}+3 \mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH} \xrightarrow{\stackrel{\text { Reflux }}{ }} \xrightarrow{\text { Benzene }} \\
\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]+3 \operatorname{Pr}^{\mathrm{i}} \mathrm{OH} \uparrow
\end{aligned}
$$

This replacement reactions is straight forward up to the liberation of two moles of the isopropanol after that it becomes comparatively slow and are pushed to completion by continuously removing the liberated Isopropanol azeotropically.

This derivatives is highly soluble in benzene, chloroform and dimethyl sulfoxide. $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ is a colourless viscous liquid which undergo solidification on aging. It is momomeric in chloroform.

Reactions of $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ with MOCH in $1: 3$ molar ratio, in refluxing methanol yields products of the following type:
$\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]+3 \mathrm{MOCH}_{3} \xrightarrow[\text { Reflux }]{\text { Methanol }}$
$\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{M}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$
($\mathrm{M}=\mathrm{Li}, \mathrm{Na}$ and K)
These derivatives are white to brown solids, soluble in methanol and dimethyl sulfoxide, exhibiting high molar conductance in 0.001 M methanol solution ${ }^{16}$ (Table-2).

IR Spectra

The IR spectral data for these bimetallic heterocyclic derivatives and the free ligand have been summarized in Table-3. The appearance of a broad band at $3385 \mathrm{~cm}^{-1}$ in $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ can be ascribed to the -OH group coordinated to aluminium. Presence of a broad band in the IR spectra of other derivatives in the region 3385-3400 cm^{-1} may be assigned to the -OH group of methanol molecule.

International Journal of Engineering \& Scientific Research

Vol. 5 Issue 3, March 2017,
ISSN: 2347-6532 Impact Factor: 6.660
Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access
International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing
Opportunities, U.S.A
Table 1: Reaction of $\mathrm{Al}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}$, with $\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$ in 1:3 molar ratio and reaction of $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ with $\mathrm{MOCH}_{3}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}$ and K$)$

$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	Reactants (g)		Molar Ratio	Product	$\begin{gathered} \text { Pr'OH }(\mathrm{g})_{\text {found }} \\ \text { (calcd.) } \end{gathered}$	Yield \%	Analysis \% found (calcd.)		
	a	b					Al	C	H
1.	$\mathrm{Al}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}$ 3.23	$\begin{gathered} \mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH} \\ 5.62 \end{gathered}$	1:3	$\mathrm{H}_{3}\left[\overparen{\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}}\right]$	$\begin{gathered} 2.84 \\ (2.86) \end{gathered}$	90	$\begin{gathered} 7.12 \\ (7.13) \end{gathered}$	$\begin{gathered} 56.85 \\ (57.12) \end{gathered}$	$\begin{gathered} 10.05 \\ (10.39) \end{gathered}$
2.	$\begin{gathered} \mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right] \\ 3.67 \end{gathered}$	$\begin{gathered} \mathrm{LiOCH}_{3} \\ 0.20 \end{gathered}$	1:3	$\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{Li}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$	-	95	$\begin{gathered} 5.47 \\ (5.48) \end{gathered}$	$\begin{gathered} 50.80 \\ (51.22) \end{gathered}$	$\begin{gathered} 9.46 \\ (9.83) \end{gathered}$
3.	3.43	$\begin{gathered} \mathrm{NaOCH}_{3} \\ 0.62 \end{gathered}$	1:3	$\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{Na}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right.$	-	98	$\begin{gathered} 4.95 \\ (4.99) \end{gathered}$	$\begin{gathered} 46.02 \\ (46.66) \end{gathered}$	$\begin{gathered} 8.90 \\ (8.95) \end{gathered}$
4.	2.35	$\begin{gathered} \mathrm{KOCH}_{3} \\ 0.73 \end{gathered}$	1:3	$\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{K}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$	-	97	$\begin{gathered} 4.55 \\ (4.58) \end{gathered}$	$\begin{gathered} 42.17 \\ (42.83) \end{gathered}$	$\begin{gathered} 8.26 \\ (8.22) \end{gathered}$

International Journal of Engineering \& Scientific Research

Vol. 5 Issue 3, March 2017,
ISSN: 2347-6532 Impact Factor: 6.660
Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access
International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Table 2 : Properties of $\left.\mathrm{H}_{3}\left[\boxed{\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right.}\right\}_{3}\right]$ and $\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{M}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$
($M=L i, N a$ and K).

S.No.	Compound	Nature of the product	Molar Conductance $\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (methanol)	Molecular weight found (calcd.)
1.	$\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$	Colourless viscous liquid	-	$\begin{gathered} \hline 374 \\ (379) \end{gathered}$
2.	$\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{Li}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$	White solid	193	$\begin{gathered} 403 \\ (492) \end{gathered}$
3.	$\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{Na}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$	Pale yellow solid	196	$\begin{gathered} 455 \\ (541) \end{gathered}$
4.	$\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{K}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$	Brown solid	198	$\begin{gathered} \hline 500 \\ (589) \end{gathered}$

International Journal of Engineering \& Scientific Research

Vol. 5 Issue 3, March 2017,
ISSN: 2347-6532 Impact Factor: 6.660
Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access
International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Table 3 : IR spectral data $\left(\mathrm{cm}^{-1}\right)$ of $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ and $\left[\left(\mathrm{CH}_{3} \mathbf{O H}\right) \mathrm{M}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathbf{C H}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ ($M=L i$, Na and K).

S.No.	Compound	v O-H	Glycolic $v \mathrm{C}-\mathrm{O}$	Ring vib.	v Al-O
1.	Ligand $\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$	3366 br	1157 m	-	-
2.	$\left.\mathrm{H}_{3}\left[\stackrel{\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right.}{ }\right\}_{3}\right]$	3385 br	1025 m	945w	625w
3.	$\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{Li}\right]_{3}\left[\sqrt{\left.\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]}\right.$	3400 br	1025 m	945m	645w
4.	$\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{Na}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$	3385 br	1046m	960m	640w
5.	$\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{K}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$	3400 br	1047m	947m	675w

br = broad, $\mathbf{m}=$ medium, $\mathbf{w}=$ weak

The medium intensity band in the region $1025-1047 \mathrm{~cm}^{-1}$ may be assigned to v C-O vibration ${ }^{17-19}$. A medium to weak intensity band in the region $625-675 \mathrm{~cm}^{-1}$ may tentatively be assigned to Al-O stretching vibration ${ }^{20}$.

${ }^{1}$ H NMR Spectra

${ }^{1} \mathrm{H}$ NMR spectra ${ }^{21}$ of these complexes and 2-methyl-2,4-pentanediol were taken in CDCl_{3} at ambient temperature and data are summarized in Table-4. The signal due to -OH proton appears at $\delta 4.29 \mathrm{ppm}$ in free 2-methyl-2,4-pentanediol. This signal is found to be absent in all derivatives, except $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ indicating the formation of Al-O bonds. $\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{M}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ show a signal at $\delta 3.51$ due to -OH proton of the methanol molecule.

Methyl, methylene and methine protons of 2-methyl-2,4-pentanediol moiety appear at $\delta 1.23-1.29, \delta 1.49-1.56$ and $\delta 4.20-4.25 \mathrm{ppm}$, respectively.

${ }^{13}$ C NMR Spectra

The ${ }^{13} \mathrm{C}$ NMR spectra of newly synthesized derivatives along with 2-methyl-2,4pentanediol are summarized in Table-5. Assignments of the peaks have been made by comparison with the parent glycol. There is no notable shifts in various ${ }^{13} \mathrm{C}$ nuclei.

In the ${ }^{13} \mathrm{C}$ NMR spectra of all these derivatives, the methyl, methylene, methine and carbonyl carbons, are observed at $\delta 23.60-33.19, \delta 49.02-49.79, \delta 65.07-65.72$ and $\delta 69.02-71.29 \mathrm{ppm}$, respectively.

${ }^{27}$ Al NMR Spectra

${ }^{27} \mathrm{Al}$ NMR spectra of some of these representative derivatives at 23.79 MHz in benzene are summarized in Table-6.

A persual of Table-6 indicates that ${ }^{27} \mathrm{Al}$ NMR chemical shift values are observed in the range $\delta+50.40$ to +70.05 as a broad hump. This indicates ${ }^{22}$ the presence of tetracoordinated aluminium(III) atom in all these derivatives. (Fig. 1)

International Journal of Engineering \& Scientific Research

Vol. 5 Issue 3, March 2017,
ISSN: 2347-6532 Impact Factor: 6.660
Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access
International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing
Opportunities, U.S.A
Table 4: ${ }^{1} \mathrm{H}$ NMR spectral data ($\delta \mathrm{ppm}$) of $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C H}_{2} \mathbf{C H}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ and $\left[\left(\mathrm{CH}_{3} \mathbf{O H}\right) \mathrm{M}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathbf{C H}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right](\mathrm{M}=\mathrm{Li}, \mathrm{Na}$ and K$)$.

S.No.		Glycolate moiety					

$\mathbf{d}=$ doublet, $\mathbf{m}=$ multiplet, $\mathbf{b r}=$ broad, $\mathbf{u}=$ unresolved

International Journal of Engineering \& Scientific Research

Vol. 5 Issue 3, March 2017,
ISSN: 2347-6532 Impact Factor: 6.660
Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access
International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing
Opportunities, U.S.A
Table 5: ${ }^{13} \mathrm{C}$ NMR spectral data ($\delta \mathrm{ppm}$) of $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathbf{C H}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$ and
$\left[\left(\mathrm{CH}_{3} \mathbf{O H}\right) \mathrm{M}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathbf{C H}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right](\mathrm{M}=\mathrm{Li}, \mathrm{Na}$ and K$)$.

S.No.	Compound	Glycolate moiety			
		$-\mathrm{CH}_{3}$	$>\mathrm{CH}_{2} / \mathrm{CH}^{*}{ }_{3} \mathrm{OH}$	- $\mathrm{CH}<$	$>\mathrm{C}<$
1.	Ligand $\mathrm{HOC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$	25.41,28.93,32.07	50.44	65.96	71.89
2.	$\left.\mathrm{H}_{3}\left[\widehat{\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right.}\right\}_{3}\right]$	24.59,27.90,31.91	49.79	65.66	71.29
3.	$\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{Li}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$	23.60,27.12,30.72	49.02	65.72	69.02
4.	$\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{Na}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$	25.00,27.68,32.46	49.62	65.07	70.82
5.	$\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{K}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$	25.25,27.81,33.19	49.64	65.48	71.05

Table No. 6 : ${ }^{27}$ Al NMR Spectral data ($\left.\delta \mathrm{ppm}\right)$ of $\left.\mathrm{H}_{3}\left[\widehat{\mathrm{Al}\left\{\mathrm{OC}_{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)}\right)}\right\}_{3}\right]$ and $\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{Na}\right]_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$

S.No.	Compound	Shift ($\delta)$	Assignment
1.	$\mathrm{H}_{3}\left[\sqrt{\left.\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]}\right.$	+50.40	Tetrahedral
2.	$\left.\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{Na}\right]_{3}\left[\sqrt{\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right.}\right\}_{3}\right]$	+70.05	Tetrahedral

Fig. 1: ${ }^{27} \mathrm{Al}$ NMR spectrum of $\mathrm{H}_{3}\left[\mathrm{Al}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{O}\right\}_{3}\right]$

Structural Features

In the absence of single crystal X-ray analysis of at least one of the representative heterocyclic glycolates of aluminium(III), it is not possible to suggest definite molecular structures. However, the above studies indicate the presence of a tetra-coordinated aluminium atom in all these derivatives, as shown in Fig. 2.

(a)

(b)

Fig. 2 : (a) Structure of $\mathrm{H}_{3}\left[\mathrm{Al}(\mathrm{O}-\mathrm{G}-\mathrm{O})_{3}\right]$
(b) Structure of $\left[\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{M}\right]_{3}\left[\widehat{\left.\mathrm{Il}(\mathrm{O}-\mathrm{G}-\mathrm{O})_{3}\right]}\right.$

$$
\mathrm{G}=-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)-
$$

References

1. R. C. Mehrotra and A. K. Rai, Polyhedron, 10, 1967 (1991) \& references therein.
2. A. A. Carey and E. P. Schram, Inorg. Chim. Acta, 59, 75 (1982).
3. A. A. Carey and E. P. Schram, Inorg. Chim. Acta, 59, 79 (1982).
4. R. Ahmed, Ph.D Thesis, University of Rajasthan, Jaipur and references therein (1982).
5. R. Ahmed, G. Srivastava and R. C. Mehrotra, Indian J. Chem. 22A, 32 (1983).
6. D. C. Bradley, R. C. Mohrotra, A. Singh and I. P. Rothwell, Metal Alkoxides and Aryloxides, Academic Press, London (2000).
7. R. C. Mehrotra, R. Bohra and D, P. Gaur Metal β-Diketonates and Allied Derivatives, Academic Press, London, 382 (1978).
8. R. C. Mehrotra and R, Bohra, Metal Carboxylates, Academic Press, London, 396 (1983).
9. R C. Mehrotra and A. Singh, Prog. Inorg. Chem, 46, 239 (1997).
10. A. Dhammani, R. Bohra and R. C. Mehrotra, Main Group Metal Chemistry, 18(12), 687-695 (1995).
11. S. Nagar, A. Dhammani, R. Bohra and R. C. Mehrotra, J. Coord. Chem., 55(4), 381-392 (2002).
12. G. J. Gainsford, T. Kemmitt and N. B. Milestone, Inorg. Chem., 34, 5244-5251 (1995).
13. R. C. Mehrotra, J. Ind. Chem. Soc., 30, 585 (1953).
14. A. I. Vogel, A Text Book of Quantitative Organic Analysis. ELBS and Longmans, London (1973).
15. D. C. Bradley, F. M. A. Halim and W. Wardlaw, J. Chem Soc., 3450 (1950).
16. D. J. Phillips and S. Y. Tyree, J. Am. Chem. Soc., $\underline{83}$, 1806 (1961).
17. A. K. Sen Gupta, R. Bohra and R. C. Mehrotra, Inorg. Chim.Acta, 170, 191 (1990).
18. A. K. Sen Gupta, R. Bohra and R. C. Mehrotra, Synth. React. Inorg. Metal-Org. Chem., 21(3), 445-455 (1991).
19. S. Bhargava, Ph.D. Thesis, University of Rajasthan, Jaipur (1992).
20. A Singh, A.K. Rai and R.C. Mehrotra, Indian J. Chem., 11, 478-480 (1973).
21. R. M. Silverstein, G. C. Bassler and T. C. Morrill, Spectrometric Identification of Organic Compounds (1991).
22. J. H. Wengrovius, M. F. Garbauskas, E. A. Williams, R. C. Going, P. E. Donahue and J. F. Smith, J. Am. Chem. Soc., 108, 982-989 (1986).
